In a nutshell: Cubic splines

Given two points (t_{k-1} , y_{k-1}) and (t_k , y_k) where $h = t_k - t_{k-1}$, given no additional information, the best approximation of a point between these two is to use a linear interpolation polynomial, where we approximate the value at $t_{k-1} + \delta h$ is

$$y_{k-1} + \delta(y_k - y_{k-1})$$

If, however, we also know the slopes $y_{k-1}^{(1)}$ and $y_k^{(1)}$ at the points at t_{k-1} and t_k , respectively, we can find the cubic polynomial that matches both the *y*-values and the slopes at both of these end points:

$$\left\{ \left[\left(h \left(y_{k-1}^{(1)} + y_{k}^{(1)} \right) + 2 \left(y_{k-1} - y_{k} \right) \right) \delta - \left(h \left(2 y_{k-1}^{(1)} + y_{k}^{(1)} \right) + 3 \left(y_{k-1} - y_{k} \right) \right) \right] \delta + h y_{k-1}^{(1)} \right\} \delta + y_{k-1} \cdot \left(h \left(y_{k-1}^{(1)} + y_{k}^{(1)} \right) + 2 \left(y_{k-1} - y_{k} \right) \right) \right] \delta + h y_{k-1}^{(1)} \right\} \delta + y_{k-1} \cdot \left(h \left(y_{k-1}^{(1)} + y_{k}^{(1)} \right) + 2 \left(y_{k-1} - y_{k} \right) \right) \right] \delta + h y_{k-1}^{(1)} \cdot \left(h \left(y_{k-1}^{(1)} + y_{k}^{(1)} \right) + 2 \left(y_{k-1} - y_{k} \right) \right) \right] \delta + h y_{k-1}^{(1)} \cdot \left(h \left(y_{k-1}^{(1)} + y_{k}^{(1)} \right) + 2 \left(y_{k-1} - y_{k} \right) \right) \right] \delta + h y_{k-1}^{(1)} \cdot \left(h \left(y_{k-1}^{(1)} + y_{k}^{(1)} \right) + 2 \left(y_{k-1} - y_{k} \right) \right) \right] \delta + h y_{k-1}^{(1)} \cdot \left(h \left(y_{k-1} - y_{k} \right) \right) \right] \delta + h y_{k-1}^{(1)} \cdot \left(h \left(y_{k-1} - y_{k} \right) \right) \right] \delta + h y_{k-1}^{(1)} \cdot \left(h \left(y_{k-1} - y_{k} \right) \right) \right] \delta + h y_{k-1}^{(1)} \cdot \left(h \left(y_{k-1} - y_{k} \right) \right) \right] \delta + h y_{k-1}^{(1)} \cdot \left(h \left(y_{k-1} - y_{k} \right) \right) \right] \delta + h y_{k-1}^{(1)} \cdot \left(h \left(y_{k-1} - y_{k} \right) \right) \right] \delta + h y_{k-1}^{(1)} \cdot \left(h \left(y_{k-1} - y_{k} \right) \right) \right] \delta + h y_{k-1}^{(1)} \cdot \left(h \left(y_{k-1} - y_{k} \right) \right) \right] \delta + h y_{k-1}^{(1)} \cdot \left(h \left(y_{k-1} - y_{k} \right) \right] \delta + h y_{k-1}^{(1)} \cdot \left(h \left(y_{k-1} - y_{k} \right) \right) \right] \delta + h y_{k-1}^{(1)} \cdot \left(h \left(y_{k-1} - y_{k} \right) \right) \right] \delta + h y_{k-1}^{(1)} \cdot \left(h \left(y_{k-1} - y_{k} \right) \right)$$

This is displayed using Horner's rule and it is assumed that $0 < \delta < 1$.

Derivation

This is found by solving the system of linear equations defined by

$$a_{3}t_{k-1}^{3} + a_{2}t_{k-1}^{2} + a_{1}t_{k-1} + a_{0} = y_{k-1}$$

$$a_{3}t_{k}^{3} + a_{2}t_{k}^{2} + a_{1}t_{k} + a_{0} = y_{k}$$

$$3a_{3}t_{k-1}^{2} + 2a_{2}t_{k-1} + a_{1} = y_{k-1}^{(1)}$$

$$3a_{3}t_{k}^{2} + 2a_{3}t_{k} + a_{1} = y_{k}^{(1)}$$

or

$$\begin{pmatrix} t_{k-1}^3 & t_{k-1}^2 & t_{k-1} & 1 & y_{k-1} \\ t_k^3 & t_k^2 & t_k & 1 & y_k \\ 3t_{k-1}^2 & 2t_{k-1} & 1 & 0 & y_{k-1}^{(1)} \\ 3t_k^2 & 2t_k & 1 & 0 & y_k^{(1)} \end{pmatrix}$$

where we have the polynomial $a_3t^3 + a_2t^2 + a_1t + a_0$ and its derivative $3a_3t^2 + 2a_2t + a_1$. This solution, however, has a higher condition number, and therefore to reduce this, we shift and scaling the *t*-values to 0 and 1, respectively, resulting in the simpler system of linear equations where the solution is in terms of δ and not *t*, as given above:

(0	0	0	1	y_{k-1}
1	1	1	1	y_k
0	0	1	0	$hy_{k-1}^{(1)}$
3	2	1	0	$hy_k^{(1)}$