In a nutshell: Cubic splines

Given two points $\left(t_{k-1}, y_{k-1}\right)$ and $\left(t_{k}, y_{k}\right)$ where $h=t_{k}-t_{k-1}$, given no additional information, the best approximation of a point between these two is to use a linear interpolation polynomial, where we approximate the value at $t_{k-1}+\delta h$ is

$$
y_{k-1}+\delta\left(y_{k}-y_{k-1}\right)
$$

If, however, we also know the slopes $y_{k-1}^{(1)}$ and $y_{k}^{(1)}$ at the points at t_{k-1} and t_{k}, respectively, we can find the cubic polynomial that matches both the y-values and the slopes at both of these end points:

$$
\left\{\left[\left(h\left(y_{k-1}^{(1)}+y_{k}^{(1)}\right)+2\left(y_{k-1}-y_{k}\right)\right) \delta-\left(h\left(2 y_{k-1}^{(1)}+y_{k}^{(1)}\right)+3\left(y_{k-1}-y_{k}\right)\right)\right] \delta+h y_{k-1}^{(1)}\right\} \delta+y_{k-1} .
$$

This is displayed using Horner's rule and it is assumed that $0<\delta<1$.

Derivation

This is found by solving the system of linear equations defined by

$$
\begin{aligned}
a_{3} t_{k-1}^{3}+a_{2} t_{k-1}^{2}+a_{1} t_{k-1}+a_{0} & =y_{k-1} \\
a_{3} t_{k}^{2}+a_{2} t_{k}^{2}+a_{1} t_{k}+a_{0} & =y_{k} \\
3 a_{3} t_{k-1}^{2}+2 a_{2} t_{k-1}+a_{1} & =y_{k-1}^{(1)} \\
3 a_{3} t_{k}^{2}+2 a_{2} t_{k}+a_{1} & =y_{k}^{(1)}
\end{aligned}
$$

or

$$
\left(\begin{array}{cccc:c}
t_{k-1}^{3} & t_{k-1}^{2} & t_{k-1} & 1 & y_{k-1} \\
t_{k}^{3} & t_{k}^{2} & t_{k} & 1 & y_{k} \\
3 t_{k-1}^{2} & 2 t_{k-1} & 1 & 0 & y_{k-1}^{(1)} \\
3 t_{k}^{2} & 2 t_{k} & 1 & 0 & y_{k}^{(1)}
\end{array}\right)
$$

where we have the polynomial $a_{3} t^{3}+a_{2} t^{2}+a_{1} t+a_{0}$ and its derivative $3 a_{3} t^{2}+2 a_{2} t+a_{1}$. This solution, however, has a higher condition number, and therefore to reduce this, we shift and scaling the t-values to 0 and 1 , respectively, resulting in the simpler system of linear equations where the solution is in terms of δ and not t, as given above:

$$
\left(\begin{array}{cccc:c}
0 & 0 & 0 & 1 & y_{k-1} \\
1 & 1 & 1 & 1 & y_{k} \\
0 & 0 & 1 & 0 & h y_{k-1}^{(1)} \\
3 & 2 & 1 & 0 & h y_{k}^{(1)}
\end{array}\right)
$$

