
In a nutshell: Cubic splines 

Given two points (tk–1, yk–1) and (tk, yk) where h = tk – tk–1, given no additional information, the best approximation of 

a point between these two is to use a linear interpolation polynomial, where we approximate the value at tk–1 +  h is  

yk–1 + yk – yk–1) 

If, however, we also know the slopes
 1

1ky   and 
 1

ky  at the points at tk–1 and tk, respectively, we can find the cubic 

polynomial that matches both the y-values and the slopes at both of these end points: 
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This is displayed using Horner’s rule and it is assumed that 0 <  < 1. 

Derivation 
This is found by solving the system of linear equations defined by 
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where we have the polynomial 3 2

3 2 1 0a t a t a t a    and its derivative 2

3 2 13 2a t a t a  . This solution, however, has a 

higher condition number, and therefore to reduce this, we shift and scaling the t-values to 0 and 1, respectively, 

resulting in the simpler system of linear equations where the solution is in terms of and not t, as given above: 
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